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Structural equation mixture models (SEMMs), when applied as a semipara-

metric model (SPM), can adequately recover potentially nonlinear latent

relationships without their specification. This SPM is useful for exploratory

analysis when the form of the latent regression is unknown. The purpose of this

article is to help users familiar with structural equation models to add SEMM to

their toolkit of exploratory analytic options. We describe how the SEMM cap-

tures potential nonlinearity between latent variables, and how confidence bands

(CBs; point wise and simultaneous) for the recovered latent function are con-

structed and interpreted. We then illustrate the usefulness of CBs for inference

with an empirical example on the effect of emotions on cognitive processing. We

also introduce a visualization tool that automatically generates plots of the

latent regression and their CBs to promote user accessibility. Finally, we

conclude with a discussion on the use of this SPM for exploratory research.

Keywords: exploratory; latent variables; point-wise confidence intervals; simultaneous

confidence envelopes; structural equation mixture model

Structural equation models (SEMs) are widely used in the educational, social,

and behavioral sciences, as many phenomena of interest such as intelligence,

emotions, and personality are latent in nature. Latent variable models have the

advantage of accounting for measurement error and have the ability to model
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complex multivariate relationships, including latent bivariate ones. Parametric

approaches of the SEM require explicit specification of the functional relation-

ship between latent predictor and latent outcome, and are appropriate for modeling

known forms (e.g., linear, quadratic, and exponential). During the exploratory

phase of research, when the functional form linking latent predictor and latent out-

come is unknown, using a flexible approach that can describe the latent relation-

ship is more appropriate and practical.

Structural equation mixture models (SEMMs; Arminger & Stein, 1997;

Arminger, Stein, & Wittenberg, 1999; Dolan & van der Maas, 1998; Jedidi,

Jagpal, & DeSarbo, 1997a, 1997b; Muthén, 2001) can be applied as a semipara-

metric model (SPM) to recover latent variable relations without their explicit

specification (Bauer, 2005). The mixture in this indirect application of SEMM

(Titterington, Smith, & Makov, 1985) is used as a statistical expedience to esti-

mate the global latent function where the component distributions are not taken

to reflect true groups in the population. This latent variable SPM is analogous to

the locally weighted scatterplot smoothing algorithm (LOWESS; Cleveland,

1979; Cleveland & Devlin, 1988) that was developed to uncover nonlinear rela-

tionships among observed variables. In LOWESS, a global regression function is

estimated by smoothing over locally linear regression estimates obtained from

overlapping localized subsets of the data. Similarly, the SPM recovers the global

latent function by aggregating across locally linear components using the SEMM

mixing probabilities as weights. More detail on this analogy is in Pek, Sterba,

Kok, and Bauer (2009).

The SPM approach to SEMM is an exploratory tool that was developed to

visually depict unspecified relationships between latent predictor and latent out-

come (Bauer, 2005; Bauer, Baldasaro, & Gottfredson, 2012; Pek, Sterba, Kok, &

Bauer, 2009). After all, ‘‘the picture-examining eye is the best finder we have of

the wholly unanticipated’’ (Tukey, 1980, p. 24). Displays of such recovered

regression functions are further enhanced by including confidence bands (CBs),

which quantify and communicate the sampling variability or precision of the esti-

mates (Wilkinson & the Task Force on Statistical Inference, 1999). Recognizing

the importance of the information afforded by confidence sets (CSs), the

American Educational Research Association (2006) and the American Psycholo-

gical Association (2010) have urged applied researchers to report them in their

publication outlets. Note that CSs refer collectively to CBs, confidence intervals

(CIs), and confidence envelopes (CEs).

Confidence bands for this latent variable SPM, which include recently devel-

oped point-wise CIs (Pek, Losardo, & Bauer, 2011) and simultaneous CEs (Pek

& Chalmers, 2015), also contain the same information required to conduct a null

hypothesis significance test (NHST). Multiple point-wise CIs for the outcome,

constructed over the range of the predictor, would form a point-wise CB; whereas

multiple simultaneous CIs would form a CE or simultaneous CB. The NHST is

generally unavailable for evaluating the form of the latent regression function in
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this SPM due to the absence of specific parameters that determine the relation-

ship linking predictor and outcome. Because this SPM approach is mainly a gra-

phical one, CBs offer the primary means to statistically evaluate the effect of

latent predictor on latent outcome.

For the purpose of adding SEMM to researchers’ toolkit of exploratory analytic

options, this article provides a demonstration of the relatively less known indirect

approach of SEMM, formulated as an SPM, that can recover unspecified relation-

ships between latent predictor and latent outcome. Although our focus is on the

SPM, we first review the conventional linear SEM and provide a nontechnical

overview of point-wise CIs and simultaneous CEs for pedagogical purposes. Next,

the linear SEM is extended to the SPM approach that employs SEMM. The con-

struction and interpretation of CIs and CEs for this SPM is also briefly explicated.

An empirical example examining the relationship between emotions and cognitive

processing is used to illustrate this SPM approach. Finally, to promote end user

accessibility to this relatively complex set of exploratory modeling tools, we intro-

duce a freely available visualization tool that automatically generates plots of the

latent variable regression along with the two types of CBs.

Parametric Linear Latent Regression

Linear relationships between latent variables are readily modeled with the

linear SEM. For simplicity, we present model equations for one latent predictor

η1 and one latent outcome η2, although the following developments may be

extended to include latent bivariate relationships nested within more complex

models.

In the linear SEM, the measurement models for the latent variables are given

by:

y1i ¼ ν1 þ λ1η1i þ ε1i

y2i ¼ ν2 þ λ2η2i þ ε2i;
ð1Þ

where y1 and y2 are vectors of observed variables measuring the latent predictor

and latent outcome for individual i. We make use of the LISREL all-y notation,

where the subscript 1 denotes the x-side of the model, and the subscript 2 denotes

the y-side of the model. The intercepts and slopes (or loadings) for the regression

of the observed variables on the latent factors are expressed in the vectors ν and

λ, respectively. The residuals are represented by ε and have a joint zero mean

vector 0 and covariance matrix Θ. To reflect the assumption that the observed

variables y are locally independent, after conditioning on the latent variables

η, Θ is typically constrained to be a diagonal matrix.

The latent linear regression model is given by:

η1i ¼ a1 þ �1i

η2i ¼ a2 þ b21η1i þ �2i: ð2Þ

Pek et al.
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The latent predictor η1 has mean a1 and variance VARð�1Þ ¼ c11, and

the latent outcome η2 has intercept a2, slope b21, and residual variance

VARð�2Þ ¼ c22. It is assumed that �1 and �2 are independent of each other and

of ε1 and ε2. Specific mean and covariance structures for the vector of observed

variables y are implied by Equations 1 and 2 and are denoted by μ(�) and �(�),

respectively, with � representing the vector of model parameters (Bollen, 1989).

Given the assumption that all residuals are multivariate normally distributed, the

joint marginal probability distribution function (PDF) for the modeled data is

multivariate normal f½y; μð�Þ;�ð�Þ�, where f½�� denotes the multivariate normal

PDF. This PDF provides the basis for maximum likelihood (ML) estimation of

the parameters. By computing the expected value of the latent outcome η2 in

Equation 2, estimates of the latent linear regression may be obtained from the fol-

lowing expression:

E½η2jη1� ¼ a2 þ b21η1; ð3Þ

where E½�� is the expectation operator. Here, the specified linear form of the latent

regression is solely determined by the two parameters a2 and b21.

Exact Confidence Bands

Two kinds of CBs, point-wise or nonsimultaneous CIs and simultaneous CEs,

may be constructed around any regression function. For the parametric linear

SEM in Equation 3, exact Wald-type CBs (cf. Wald, 1943) are typically con-

structed using the familiar equation: estimate� critical value � standard

error of estimate:

Ê½η2jη1� � wp;1�a½dVARðÊ½η2jη1�Þ�1=2: ð4Þ

Assuming asymptotic normality of the sampling distribution of Ê½η2jη1�, the

critical value is wp;1�a or the (1 � a)th quantile of the square root of the w2 dis-

tribution with p degrees of freedom. Note that z ¼ w1, and the standard normal

distribution is the square root of the w2 distribution with p¼ 1 degrees of freedom

(e.g., see Leemis & McQueston, 2008). As the latent linear regression function is

additive in its parameters, computation of the standard error of estimate of Equa-

tion 3 is exact and given by:

½dVARðÊ½η2jη1�Þ�1=2 ¼ ½dVARðâ2Þ þ 2η1
dCOVðâ2; b̂21Þ þ η2

1
dVARðb̂21Þ�1=2; ð5Þ

where dVARð�Þ is the estimate of the variance of the relevant estimated parameter,

and dCOVðâ2; b̂21Þ is the estimate of the covariance between the intercept and the

slope estimates. Wald-type CIs and CEs differ in critical values used in their

computation. Note that CIs and CEs are distinct from prediction intervals and

prediction envelopes. The former pair is constructed about the mean outcome
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or mean regression function, whereas the latter pair is constructed about a new

observation or a regression function for new observations.

Confidence intervals. Point-wise CIs for the linear latent regression are con-

structed using critical values based on the (1 � a)th quantile of the square root

of the w2 distribution with p ¼ 1 degrees of freedom w1;1�a, or the more familiar

a/2th quantile of the standard normal distribution z1�a=2. For a 95% CI,

w1;:95 ¼ z:975 ¼ 1:96. Suppose that Ê½η2jη1 ¼ 10� ¼ 1:2, with 95% CI [1.0,

1.4]. Over repeated sampling, such a CI is expected to capture E½η2jη1 ¼ 10�
95% of the time. Recall that CSs also contain the necessary information required

to conduct an NHST. Suppose that H0 : E½η2jη1 ¼ 10� ¼ 0 is to be evaluated.

Because the 95% CI does not contain the null value of zero, H0 is rejected at p

< .05, and E½η2jη1 ¼ 10� is significantly different from zero.

Point-wise CIs are based on an a level or Type I error rate that is valid for a

single population value. Such CIs were not developed for inference about multi-

ple population values let alone an infinite number of population values that rep-

resent a regression function as a whole. Although multiple point-wise CIs could

be constructed about a regression function to form a point-wise CB (e.g., see top row
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FIGURE 1. Wald-type and parametric bootstrap confidence intervals and confidence

envelopes for the linear effects of positive and negative emotions on heuristic processing.
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of plots in Figure 1), the Type I error rate associated with the set of multiple CIs will

accumulate or become inflated. Consider the simple instance of two estimates

Ê½η2jη1 ¼ 10� ¼ 1:2 and Ê½η2jη1 ¼ 15� ¼ 2:0 with 95% CIs [1.0, 1.4] and [1.7,

2.3], respectively. Over repeated sampling, such CIs would independently contain

E½η2jη1 ¼ 10� and E½η2jη1 ¼ 15� 95% of the time. The coverage rate of .95 per-

tains to each interval estimate, independent of the other. When both population

values are considered simultaneously, statistical theory assures that the joint

coverage of these two CIs for E½η2jη1 ¼ 10� and E½η2jη1 ¼ 15� would be less

than or equal to 95%.

Reduction in the coverage of point-wise CIs for multiple population values is

better known as the issue of multiplicity or inflation of the family-wise Type I

error under multiple testing. Each of the two CIs in the running example does not

capture their relevant null hypothesis, that is, H0 : E½η2jη1 ¼ 10� ¼ 0 and

E½η2jη1 ¼ 15� ¼ 0 can be rejected independently of each other, at p < .05. In con-

trast, the joint null hypothesis H0 : E½η2jη1 ¼ 10� ¼ 0
T

E½η2jη1 ¼ 15� ¼ 0

may or may not be rejected at p < .05. Here, \ is the intersection between the two

hypotheses, requiring both conditions to occur jointly. When multiple points are

tested simultaneously, the family-wise Type I error rate afw � :05. Adjustments

such as the Bonferroni approach can be applied to multiple point-wise CIs to allow

for joint inference by controlling the family-wise afw level (e.g., see Neter, Kutner,

Nachtsheim, & Wasserman, 1996, pp. 157–158). Yet, such post hoc corrections are

not well suited to evaluate large numbers of estimated values, such as an infinite set

representing the regression function as a whole. The Bonferroni method has been

shown to be overly conservative in such contexts (Perneger, 1998). Instead, CEs or

simultaneous CBs should be constructed when inference about the regression func-

tion as a whole is of interest.

Confidence envelopes. The extension of the CI for a single point to a CS for a

regression function was achieved in the seminal work of Working and Hotelling

(1929). They called their development a CE, which envelopes the regression func-

tion as a whole. Wald-type simultaneous CEs for the latent linear regression are

constructed with critical values based on the (1� a)th quantile of the square root

of the w2 distribution with p ¼ 2 degrees of freedom, w2;1�a. Here, p ¼ 2 because

two parameters define the regression function in Equation 3, and for a 95% CE, w2,

.95¼ 2.45. The critical value is determined by a Scheffé (1953) correction, which

rests on the sampling distribution of w2
maximum where all possible values of the

latent predictor may be tested while maintaining the family-wise error rate

(Maxwell & Delaney, 2004). Point-wise CIs are therefore smaller or equal to the

commensurate slices of the CE, at conditional values of η2, as w1;1�a � wp;1�a.

Additionally, in contrast to point-wise CIs that communicate the precision of a sin-

gle estimate that lies on the regression function, CEs communicate the precision of

the infinite number of estimates that make up the entire regression function.
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Suppose that the following estimates â1 ¼ 2:4 and b̂21 ¼ �0:7 were obtained

for the latent linear regression of Equation 3, and a 95% CE was constructed.

Over repeated sampling, the population latent linear regression function is

expected to fall within such an envelope 95% of the time. Note that the CE is

typically communicated visually, as it is composed of an infinite number of

points across the latent predictor η1 (e.g., see the bottom row plots of Figure

1). Given the relationship between CBs and NHSTs, CEs also allow for inference

about the regression function as a whole. Consider the null hypothesis

H0 : E½η2jη1� ¼ 3:0� 1:5η1. If the 95% CE for the linear function does not con-

tain or intersect the null function, H0 is rejected at p < .05, and the population

function is significantly different from E½η2jη1� ¼ 3:0� 1:5η1.

Recall that the linear latent regression of Equation 3 is a parametric model,

and the form linking latent predictor with latent outcome is specified by the inter-

cept (a2) and slope (b21) parameters. Instead of using the CE to evaluate

H0 : E½η2jη1� ¼ 3:0� 1:5η1, an NHST may instead be set up to test the equiva-

lent null hypothesis H0 : a1 ¼ 3:0
T

b21 ¼ �1:5. Note the one-to-one mapping

between the parameter space for �p and the functional space E½η2jη1� by

gð�pÞ ¼ E½η2jη1�. Another advantage of CEs over NHST, beyond providing esti-

mate precision, is that CEs afford analysts the flexibility of testing different func-

tional forms between predictor and outcome. Continuing with the working

example, the constructed CE may be used to test different functional forms, such

as H0 : E½η2jη1� ¼ 3:0� 1:5η1 þ :1η2
1 or H0 : E½η2jη1� ¼ 3:5� e:5η1 , where the

parameters in the null hypotheses need not correspond to those that are estimated

from the data. This property of CEs is especially useful as an inferential device when

paired with a semiparametric method that can recover the unspecified form of the

relationship between latent predictor and latent outcome that is described below.

Flexible Semiparametric Latent Regression

Latent bivariate relationships can be modeled without explicit specification of

their form by applying SEMMs as an SPM. This SPM is an extension of the linear

SEM defined in Equations 1 and 2. Unlike linear SEM, where the joint distribu-

tion of the vector of observed variables in y is taken to be multivariate normal,

the SEMM here assumes that the joint distribution of y can be approximated

by k ¼ 1, . . . , K multivariate normal distributions. The latent variable model

is then given by:

η1i½k� ¼ a1½k� þ �1i½k�

η2i½k� ¼ a2½k� þ b21½k�η1i½k� þ �2i½k�:
ð6Þ

Compared to Equation 2 of the linear SEM, Equation 6 of the SPM has addi-

tional subscripts k associated with each parameter that allows for different means

a1[k], intercepts a2[k], slopes b21[k], variances of the latent predictor VARð�1½k�Þ ¼

Pek et al.
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c11½k�, and residual variables of the latent outcome VARð�2½k�Þ ¼ c22½k� for each

component or class k. Some or all of the parameters in Equation 7 are required to

differ across the K latent classes for the model to flexibly recover potentially

nonlinear latent relationships, although c11[k] and c22[k] could be optionally con-

strained to be equal over classes. In practice, model selection indices are typically

used to determine the constraints placed on c11[k] and c11[k]. The linear SEM

within each k class is assumed to have the measurement model of Equation 1,

implying that the measurement model is invariant over the K classes. This mea-

surement invariance constraint ensures that the latent variables are equivalently

defined for all individuals in the population (Meredith, 1993).

Let P(k) denote the mixing probability for each latent Class k such thatPK
k¼1 PðkÞ ¼ 1. The expected value of the latent outcome within Class k as

defined in Equation 7, which is analogous to Equation 3, is:

E½k�½η2jη1� ¼ a2½k� þ b21½k�η1½k�: ð7Þ

These K within-class or local relationships between the latent variables are

linear, and the flexible global relationship between the latent variables is

obtained by taking the expected value across the K components. The conditional

mixing probabilities Pðkjη1Þ are then used as smoothing weights to aggregate

across the locally linear relationships in Equation 7:

E½η2jη1� ¼
XK

k¼1

Pðkjη1ÞE½k�½η2jη1�; ð8Þ

where

Pðkjη1Þ ¼
PðkÞf½k�½η1; a1½k�;c11½k��PK

k¼1 PðkÞf½k�½η1; a1½k�;c11½k��
ð9Þ

is the conditional probability of class membership at a given value of the latent

predictor. For simulated and empirical examples showing how the method works

to recover latent relationships, see Pek et al. (2009), and for technical details, see

Bauer (2005).

From a series of targeted simulations, this SPM has been shown to adequately

recover different types of nonlinear latent functions with limited bias (Bauer,

2005; Bauer et al., 2012; Pek & Chalmers, 2015; Pek et al., 2011). Bias of the

aggregate function is reduced by selecting more mixing components at the expense

of estimate efficiency. In general, two other factors influence bias. First, bias tends

to be larger at regions of high curvature which the linear local function tends to

inadequately approximate. Second, bias also tends to be large at the tail ends of the

latent predictor where data are sparse. The number of mixing components is often

determined by the Akaike Information Criterion (AIC; Akaike, 1974) or the Baye-

sian Information Criterion (BIC; G. Schwarz, 1978), with the AIC tending to select
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more classes than the BIC. Simulations have demonstrated that models with min-

imum AIC estimate the form of the unknown function with less bias and higher

sampling variability compared to models with minimum BIC (Bauer et al., 2012).

Unlike parametric latent regression models (e.g., the linear latent regression),

the parameters in the flexible latent regression serve as a means to recover the

unknown latent function and have no meaningful interpretation. As the para-

meters of the SPM in Equation 8 are nuisance parameters, NHSTs are not directly

available for testing certain research questions such as linearity of the latent rela-

tionship. Instead, CBs become the primary inferential device for statistically

evaluating the form of the flexible latent regression.

Approximate Confidence Bands

Like the linear SEM, two kinds of CBs may be constructed about the flexible

latent regression. Recently developed approaches for constructing CBs for this

flexible latent regression are not exact due to the nonlinear function of the con-

ditional mixing probabilities in Equation 9. These developments provide two

methods to construct approximate CIs (Pek et al., 2011) and CEs (Pek &

Chalmers, 2015). The first method is the familiar Wald-type CBs, and the second

method is the parametric bootstrap CBs.

Wald-type confidence bands. Wald-type CBs for the flexible latent regression

have been generally defined in Equation 4. As Ê½η2jη1� is nonlinear in its para-

meters for the SPM, the standard error of estimate is obtained via the delta

method. In brief, the delta method linearizes the expression of E½η2jη1� in Equa-

tion 8 with a first-order Taylor Series expansion, resulting in an approximate

standard error of estimate. Raykov and Marcoulides (2004) provide a tutorial

on applying the method in SEMs. Formulas underlying the delta method standard

error of estimate for the SPM are provided in Pek, Losardo, and Bauer (2011).

Recall that Wald-type CIs and CEs differ only in the critical values used in

Equation 4. Point-wise CIs are computed with p¼ 1 degrees of freedom, whereas

simultaneous CEs are constructed with p degrees of freedom (Scheffé, 1953;

Working & Hotelling, 1929). Specifically, the p degrees of freedom are the num-

ber of parameters present in the latent regression expressed in Equation 8. For

instance, p ¼ 9 for a K ¼ 2 class solution with two intercepts (a2[1] and a2[2]),

two slopes (b21[1] and b21[2]), two means (a1[1] and a1[2]), two variances

(c11[1] and c11[2]), and one class probability (P (k¼ 1)). Only one class probabil-

ity is required to define two class probabilities because P (k¼ 2)¼ 1� P (k¼ 1).

For Wald-type CBs to have proper coverage, it is assumed that the sampling

distribution of Ê½η2jη1� is asymptotically normally distributed. Coverage is the

probability of how often the CBs capture the population value(s) over repeated

sampling. This assumption allows the use of wp;1�a as the critical value. How-

ever, there may be instances, such as limited sample size, where the sampling
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distribution of the global regression is non-normal. In such cases, bootstrap CBs

may be a reasonable alternative to Wald-type CBs.

Parametric bootstrap confidence bands. The bootstrap is an empirically based

resampling algorithm that is typically employed to estimate the sampling distri-

bution of an estimate (see Efron & Tibshirani, 1993, for a good introduction).

The conventional nonparametric bootstrap approach is relatively untenable for

the computationally burdensome SPM, and parametric bootstrap CBs are con-

structed instead (Pek & Chalmers, 2015; Pek et al., 2011). Rather than drawing

bootstrap replicates from the data in the nonparametric approach, bootstrap

replicates are drawn from the model for the data defined in Equation 8 under

the parametric approach. Given the duality or one-to-one mapping between the

parameter space �p and function space E½η2jη1�, and the asymptotic normality

of ML estimates, bootstrap replicates are drawn from f mð�̂pÞ;�ð�̂pÞ
h i

. Con-

sider the case where K ¼ 1, such that Equation 8 reduces to Equation 3, and

a simple latent linear regression is obtained. Parametric bootstrap CBs for this

model are based on bootstrap replicates drawn from the multivariate normal

distribution f
â2

b̂21

� �
;

dVARðâ2Þ dCOVðâ2; b̂21ÞdCOVðb̂21; â2Þ dVARðb̂21Þ

 !" #
.

To construct point-wise CIs, an arbitrarily large number of BCI replicates are

randomly drawn from the parametric model or multivariate normal distribution

of the p ML parameter estimates to obtain BCI sets of parameter estimates. For

instance, with BCI ¼ 1,000 sets of parameter estimates, 1,000 different estimated

latent regression functions may be computed across the range of the latent pre-

dictor η1. At conditional values of η1, lower and upper point-wise CIs are defined

as the [(a/2)100% BCI]th and [(1� a/2)100% BCI] ordered value among the set of

bootstrapped latent regression values. With the example of BCI ¼ 1,000, the

lower and upper bounds of the 95% CI are the 25th and 975th ordered boot-

strapped value at a given latent predictor value η1.

In a similar fashion, simultaneous parametric bootstrap CEs are constructed

with the BCE bootstrap replicates empirically estimating the sampling distribu-

tion of the aggregate function Ê½η2jη1� as a whole. Unlike the approach of sorting

bootstrap estimates at each value of η1 to obtain upper and lower bounds of the

CI, bounds of the CE are defined as the boundary of the overlap of a predeter-

mined number of BCE bootstrap regression functions (Pek & Chalmers, 2015).

The number of BCE replicates is determined by the p number of parameters in

Equation 8 and the error rate a. In particular, BCE is based on the expected value

of the range of wp;1�a½dVARð�̂pÞ�1=2
(see online appendix of Pek and Chalmers,

2015, for technical details and a simple example). For the linear latent regression

example, where p ¼ 2, BCE 	 85, and the boundary of these 85 bootstrapped

regression lines form the CE (cf. Thissen & Wainer, 1990). The two plots in the
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bottom row of Figure 1 illustrate Wald-type and parametric bootstrap CIs and

CEs for the simple linear regression with p ¼ 2.

Properties of the Approximate Confidence Bands

Several important similarities and distinctions between the different types of

CBs for the SPM should be noted for practical applications. The properties of

Wald-type and parametric bootstrap CBs are first highlighted, followed by a

review of the different uses of CIs and CEs in the context of applying the SPM

in exploratory analyses.

Wald-type versus bootstrap confidence bands. Both approaches to generating

CBs for the SPM require asymptotic normality of the set of parameter estimates

�̂p. The Wald-type approach is an analytical method that assumes asymptotic

normality of the sampling distribution of gð�̂pÞ ¼ Ê½η2jη1�, leading to symmetric

CBs as defined in Equation 4. In contrast, the parametric bootstrap method

assumes asymptotic normality of the parameter estimates f mð�̂pÞ;�ð�̂pÞ
h i

that

serves as a model with which bootstrap replicates are drawn. The sampling dis-

tribution of Ê½η2jη1� is estimated by the bootstrap replicates, and typically results

in asymmetric parametric bootstrap CBs. Calculating Wald-type CBs are imme-

diate as they are defined by closed-form solutions, whereas estimating the

empirical parametric bootstrap CBs tends to be computationally intensive.

Recall that these two methods generate approximate CBs about the aggregate

latent regression function. For the Wald approach, the delta method is employed

to approximate the nonlinear Equation 8 with a linear function to simplify com-

putations. Similarly, the parametric bootstrap approach does not result in exact

CBs because a model is used as an approximation to the data in contrast to the

nonparametric bootstrap approach. The approximations underlying both methods

to constructing CBs improve with larger sample size. Monte Carlo studies show

that the parametric bootstrap CI has better coverage at lower sample sizes, and

the Wald-type CI has better coverage at larger sample sizes across symmetric and

asymmetric population functions (Pek et al., 2011). Sample size had little effect

on the coverage of Wald-type and parametric bootstrap CEs (Pek & Chalmers,

2015).

In general, these simulation studies confirm that Wald-type CBs tend to be

more conservative compared to parametric bootstrap CBs. Excluding tail-end

values of the latent predictor η1, where data are sparse, coverage for the para-

metric bootstrap CI was at the nominal (1 � a)%. In contrast, coverage for the

Wald-type CI tended to exceed the nominal (1� a)%. The better coverage of the

parametric bootstrap CIs came at the cost of tracking bias more closely due to its

empirical nature. Specifically, coverage of the bootstrap CIs was liberal at

specific ranges of the latent predictor when bias was present. In contrast,
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Wald-type CIs tended to be robust against bias and had larger than nominal cov-

erage rates. For the CEs, the parametric bootstrap approach had very slightly bet-

ter coverage rates than the Wald-type method. Despite these noted differences in

the performance of Wald-type and parametric bootstrap CBs, these approximate

CBs were observed to be highly similar for a single data set (see Figures 1 and 2).

Confidence intervals versus confidence envelopes. Different types of research

questions are answered with CIs and CEs. When the effect of a single latent predictor

value is of interest (e.g., a meaningful threshold), CIs are employed. CBs formed by

multiple point-wise CIs are discouraged, as the CB would convey an overly liberal

confidence level about the regression function. Suppose that the relationship

between motivation (η1) and math ability (η2) is explored, and a motivation score

of η1¼ 5 is at a level ideal for intervention, and a math ability score of η2¼ 30 indi-

cates competence. A 95% CI for E½η2jη1 ¼ 5� provides a range of plausible popu-

lation math ability scores associated with the given motivation score. Additionally,

the CI allows for conducting an NHST of H0 : E½η2jη1 ¼ 5� ¼ 30. Results of such
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FIGURE 2. Wald-type and parametric bootstrap confidence intervals and confidence

envelopes for the recovered effect of positive and negative emotions on heuristic process-

ing. The fine gray solid line within the 90% Wald-type confidence interval suggests that

the latent function could be linear.
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an NHST could indicate that at this low level of motivation, which is associated with

intervention efficacy, math ability scores are below an acceptable threshold. This CI

and its associated NHST could thus inform of the viability of implementing an inter-

vention to boost low motivation in order to improve math ability scores. During the

exploratory stage of research, when a specific level of η1 in relation to η2 is exam-

ined, CIs communicate estimate precision and can be inverted to conduct NHSTs

when such tests are meaningful.

In contrast, CEs are used when the form of the regression as a whole is of

interest. Recall that in the SPM, the model parameters are used as an expedience

to recover the unknown function and no single parameter can be tested to

evaluate the effect of the latent predictor on the outcome. In contrast, suppose

a parametric model with E½η2jη1� ¼ a2 þ b21η1 þ b31η2
1 is specified. Here, it

may be concluded that the effect of η1 on η2 is nonlinear when an NHST of

H0 : b31 ¼ 0 is rejected. Nonlinearity of the latent function that is recovered via

the SPM is, instead, informed by CEs. In particular, an NHST of H0 : E½η2jη1� ¼
a0 þ b0η1 is set up such that its rejection would indicate nonlinearity of the rela-

tionship between η1 and η2. Note that a0 and b0 can take on any real value and

represent all possible linear functions. When the CE does not contain H0, linear-

ity is rejected (Pek & Chalmers, 2015). In practice, this test for nonlinearity is

implemented as a line finding algorithm. When a line cannot be found within the

CE, H0 is rejected and nonlinearity is concluded; when a line is found within the

CE, linearity cannot be rejected. Therefore, when the form of a latent relationship

is unknown during exploratory analyses, use of the SPM in conjunction with CEs

allows for researchers to rule out linearity.

The next section provides an illustration of Wald-type and parametric boot-

strap CBs, where the effect of emotions on cognitive heuristic processing is

explored. We first assume a linear association between emotions and heuristic

processing as a special case of the SPM and demonstrate the use of CIs and CEs.

The assumption of linearity is then relaxed, and the SPM is applied to recover the

unknown form of the latent function between emotions and heuristic processing.

Similarly, CIs and CEs are constructed and interpreted.

Empirical Demonstration

Research has shown that emotions reliably influence individuals’ tendency to

rely on heuristic processing in decision making. Individuals in a positive mood

are more likely to adopt a heuristic processing strategy by relying on general

knowledge structures instead of giving attention to detail (see N. Schwarz,

2000, for a review). Individuals in a negative mood, in contrast, are more likely

to adopt a strategy characterized by systematic cognition and attention to detail

(N. Schwarz & Clore, 1996).

A real data example (N ¼ 507) is used to explore the effect of positive and

negative emotions on cognitive heuristic processing. Based on past research, it
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is expected that positive and negative emotions are monotonically predictive of

heuristic processing in opposite directions. Specifically, positive emotions are

anticipated to be positively associated with heuristic processing, whereas nega-

tive emotions are hypothesized to be negatively related with heuristic processing.

Details regarding the sample, operationalization of the constructs, and parameter

estimates are reported in Pek et al. (2009). Model estimation was carried out with

Mplus 7.1 (Muthén & Muthén, 2011). Note that theory does not inform of the

functional form between emotions and heuristic processing aside from the expec-

tation of monotonicity, that is, the effect of emotions on heuristic processing is

either strictly increasing or strictly decreasing. We first make the simplifying

assumption that the relationship between emotions and heuristic processing is

linear and fit a K¼ 1 class SEMM model to the data. Additionally, a more liberal

a ¼ .10 rate is used for this exploratory analysis.

Linear Latent Variable Regression

The linear form linking positive and negative emotions to heuristic processing

is presented in Figure 1. Plots on the left display the linear relationship between

positive emotions and heuristic processing and plots on the right display the asso-

ciation of negative emotions with heuristic processing. Confirming observations

of previous studies, positive emotions were positively associated with cognitive

heuristic processing and negative emotions were negatively related with cogni-

tive heuristic processing.

Confidence intervals. A few general observations may be gleaned from the first

row of plots in Figure 1, where each solid dot is the estimated latent outcome of

heuristic processing Ê½η2jη1�
� �

at conditional values of emotions (η1). The open

circles and crosses depict point-wise 90% Wald-type and parametric bootstrap

CIs, respectively. Confidence intervals for a linear function follow a quadratic

form. Confidence intervals with the smallest widths are always located at the

mean value of the latent predictor η1 such that the most precise estimates are

where the data are least sparse. Conversely, CIs indicating the poorest estimate

precision are at the end points of η1 where data are sparse. Additionally, the open

circles and crosses in Figure 1 mostly fall on top of each other at each conditional

latent predictor value, indicating that it makes little difference for applied

researchers to interpret one type of CI over the other in this example.

Point-wise CIs allow for inference at conditional values of the latent predictor

η1, and the set of CIs that form the CB should not be used to draw inferences

about the regression function. Suppose that past studies have indicated that a

value of η1 ¼ 2.5 on positive and negative emotions is substantively important,

and a minimal value of η2 ¼ 0.5 on heuristic processing is associated with an

unfavorable decision-making style. Given a value of η1 ¼ 2.5 for positive emo-

tions, the 90% Wald-type and parametric bootstrap CIs for heuristic processing
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are [0.49, 0.53] and [0.50, 0.53], respectively. For η1 ¼ 2.5 on negative emo-

tions, the 90% Wald-type and parametric bootstrap CIs for predicted heuristic

processing are both [0.39, 0.46]. A test of H0 : E½η2jη1 ¼ 2:5� ¼ 0:5 for nega-

tive emotions is significant, as the null value is not contained within the CIs,

implying that a value of 2.5 in negative emotions is related to an unfavorable

level of heuristic processing. However, the same test is not rejected for positive

emotions. The data does not support the claim that a value of 2.5 on positive

emotions is associated with an undesirable level of heuristic processing.

Confidence envelopes. Wald-type and parametric bootstrap CEs for the linear

association of positive and negative emotions with heuristic processing are pre-

sented in the bottom row of plots in Figure 1. The linear relationships are repre-

sented by the solid line, and the 90% Wald-type and parametric bootstrap CEs are

represented by dashed and dot-dashed lines, respectively. Similar to point-wise

CIs, the two types of CEs show much overlap and communicate highest precision

at the centroid of the linear latent function. As CEs communicate the sampling

variability of the regression function as a whole, the CEs are wider than their

commensurate CIs at conditional values of the latent predictor η1. These CEs

could also be employed to test specific hypotheses about the functional relation-

ship between emotions and heuristic processing (e.g., H0 : E½η2jη1� ¼ a0 for an

intercept-only model, where a0 can take on any real value). However, it is more

common to conduct an equivalent NHST involving the parameters directly for

this parametric model (e.g., H0 : b21 ¼ 0).

The main advantage of employing CEs for inference is when the form of the

latent relationship is unknown and the SPM is used as an exploratory model. As

theory does not suggest how emotions and cognitive decision making are related,

it is preferable to estimate the latent regression function without a priori specifi-

cation of its form. In the next section, we demonstrate the use of the SPM as an

exploratory device, in conjunction with CIs and CEs, to flexibly describe and

evaluate unspecified latent variable relationships.

Flexible Latent Variable Regression

The results from the linear SEM confirm that positive and negative emotions

are related to heuristic processing positively and negatively, respectively. The

assumption of linearity is now relaxed, and the SEMM is applied as an SPM

to recover potential nonlinearity between emotions and cognitive decision mak-

ing. For both emotions, the BIC indicated that K ¼ 2 classes fit the data best (see

Pek et al., 2009). Simulation work recommends the BIC among other informa-

tion criteria to select classes in finite mixtures (Nylund, Asparouhov, & Muthén,

2007). Under the SPM, the number of classes determined by minimum BIC tends

to be efficient compared to the AIC (Bauer et al., 2012) and strikes a balance

between the flexibility of the SPM in capturing the unknown latent function
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(more bias) and sampling variability (more estimate precision). The potentially

nonlinear latent regressions of heuristic processing on positive and negative

emotions are presented in Figure 2. Plots on the left of the 2 � 2 array show

the relationship between positive emotions and heuristic processing, and

those on the right show the relationship between negative emotions on heur-

istic processing. The first row of plots display CIs and the second row of

plots present CEs.

Consistent with theory, positive emotions were monotonically and positively

associated with heuristic processing. Beyond a positive emotion value of

η1 ¼ 3.0, the relationship between positive emotions and heuristic processing

becomes more acute. This pattern suggests that heuristic processing strategies

increase more sharply under the influence of a strongly positive mood. Negative

emotions were found to be monotonically negatively related with heuristic pro-

cessing.1 In particular, the tendency to rely on heuristic processing decreases

sharply and reaches an asymptote when negative emotions exceed a value of

about η1 ¼ 2.0. These descriptive results from the SPM suggest that the form

of the relationship of the two types of emotions to heuristic processing are dis-

tinct. The influence of negative emotions on heuristic processing is different

from the absence of positive emotions, suggesting a limit to depressive realism

in that individuals appear to retain some heuristic processing even under the

influence of strong negative emotions (Alloy & Abramson, 1979).

Confidence intervals. In the top row of plots in Figure 2, the solid dots represent

predicted values on heuristic processing at given levels of positive or negative

emotions. Additionally, the open circles and crosses represent 90% Wald-type

and parametric bootstrap CIs, respectively. The CIs here no longer form a

point-wise CB that is quadratic in form when the SPM is used to recover the

unknown form between the latent variables. As the global latent regression is

an aggregation of K ¼ 2 linear components, the mean levels of the latent predic-

tor are not associated with the best estimate precision. Instead, the tightest CIs are

associated with values of about η1 ¼ 3.5 for positive emotions and η1 ¼ 1.5 for

negative emotions.

Comparing the first row of plots between Figures 1 and 2, the CIs depict more

estimate uncertainty for the SPM compared to the linear SEM as expected; under

the linear SEM, p ¼ 2 parameters define the form of the latent regression,

whereas p ¼ 9 are used by the SPM to recover the latent relationship. Addition-

ally, the Wald-type and parametric bootstrap CIs for the SPM show less overlap

due to the approximate nature of these CIs.

As with the linear SEM, these approximate CIs can be inverted to test

null hypotheses. Suppose we examine the same null hypothesis of

E½η2jη1 ¼ 2:5� ¼ 0:5, which indicates an unfavorable level of heuristic pro-

cessing when emotions have a value of 2.5. The 90% Wald-type and para-

metric bootstrap CIs for heuristic processing, which is associated with a
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value of η1 ¼ 2.5 on positive emotions, are both [0.45, 0.51]. For negative

emotions, the 90% Wald-type and parametric bootstrap CIs for predicted lev-

els of heuristic processing are both [0.42, 0.48]. Similar to results of the linear

SEM, this null hypothesis is independently rejected for negative, and not pos-

itive emotions.

Confidence envelopes. The bottom row of plots in Figure 2 depicts 90% Wald-

type and bootstrap CEs in dashed and dot-dashed lines, respectively. The poten-

tially nonlinear effects of emotions on heuristic processing are represented by the

bold solid lines. Compared to the linear SEM, these two sets of approximate CEs

for the SPM do not fall on top of each other. Here, the parametric bootstrap CE

tends to be slightly tighter across the range of both types of emotions compared to

the Wald-type CE. The bootstrap CE is therefore more likely to reject the test of

linearity compared to the Wald-type CE.

Recall that linearity of the unknown latent function may be statistically eval-

uated by using the CEs to test the null hypothesis H0 : E½η2jη1� ¼ a0 þ b0η1,

where a0 and b0 can take on any real value. When a linear function is bounded

within the CEs, this null hypothesis cannot be rejected. Conversely, when no lin-

ear function is bounded within the CEs, nonlinearity of the latent regression is

suggested. From the left bottom plot of Figure 2, the 90% CEs for the relationship

between positive emotions and heuristic processing can contain several linear

functions. For instance, the linear function E½η2jη1� ¼ 0:2þ 0:1η1 lies within

the boundaries of both types of CEs (not graphed). Therefore, there is no strong

evidence in support of a nonlinear relationship between positive emotions heur-

istic processing.

The 90% Wald-type CE for the effect of negative emotions and heuristic pro-

cessing was found to contain a line, which is depicted as a gray solid fine line in

the right bottom plot of Figure 2. However, no such line was found to be con-

tained within the analogous 90% parametric bootstrap CE. This noted discre-

pancy is due to the parametric bootstrap CE being slightly more efficient

compared to the Wald-type CE. Taken together, these observations provide some

evidence that the effect of negative emotions on heuristic processing is nonlinear.

As the SPM and CEs here are used as exploratory devices, future studies could be

designed to confirm the nonlinear form linking negative emotions to heuristic

processing.

We have demonstrated that the SPM is a generalization of the linear SEM and

has the advantage of relaxing the assumption of linearity to recover potential

nonlinearity between latent variables. The SPM also has the added advantage

over parametric approaches to modeling nonlinear latent relationships by making

minimal distributional assumptions and avoiding a priori specification of the

functional form between latent predictor and latent outcome. As the flexibility

of the SPM reduces bias at the cost of efficiency, as illustrated in the CIs and CEs

between the linear SEM of Figure 1 and the SPM of Figure 2, the SPM is better
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suited for exploratory research. The higher uncertainty in exploratory research is

built into the SPM in terms of inefficiency in estimation as reflected in larger

sampling variability.

Visualization Tool

Applying the SPM as an exploratory modeling device, especially generating

plots of the recovered function and its CBs, requires considerable post-

processing of results. To promote accessibility of this model to applied research-

ers, we introduce a new utility that builds on two existing tools written in R

(R Core Team, 2013) that generates plots of (a) the aggregate latent function,

(b) the marginal mixture densities for the latent variables, (c) the bivariate con-

tour plot, and (d) the class probabilities across the range of the latent predictor

(Pek et al., 2009). The new utility repackages these existing tools as an interac-

tive web application using the R package ‘‘shiny’’ (RStudio, Incorporation, 2014)

and is enhanced with the inclusion of newly developed Wald-type and parametric

bootstrap CIs and CEs (Pek et al., 2011; Pek & Chalmers, 2015). The utility can

generate plots of the four types of CBs: (a) Wald-type CIs, (b) parametric boot-

strap CIs, (c) Wald-type CEs, and (d) parametric bootstrap CEs. Additionally,

point-wise Wald-type and parametric bootstrap CIs about predicted latent out-

come values E½η2jη1� could be computed with user-specified conditional values

on the latent predictor η1. This utility also includes an implementation of the line

finding algorithm, which could be run to diagnose nonlinearity of the recovered

latent function when CEs are computed. The web application has been written to

read Mplus (Muthén & Muthén, 2011) output files automatically so as to seam-

lessly generate CIs and CEs. As with the older utilities, users can continue to

manually input estimates from other software such as OpenMx (Boker et al.,

2011) to obtain plots other than the CIs and CEs. We provide instructions and

some simulated examples on the use of this utility in the accompanying Online

Appendix. Mplus output files for the empirical example relating emotions with

heuristic processing are available online with the Online Appendix.

Summary and Conclusion

Research conducted in the educational, social, and behavioral sciences often

employ latent variable modeling techniques. Although latent constructs may not

necessarily be linearly related, this simplifying assumption is often made with

little theoretical backing during the early stages of research. When the functional

form between latent variables is unknown, the SPM is a useful exploratory

approach to recover the unspecified latent relationship. A visualization of the

recovered latent function with the addition of CIs or CEs enhances its description

and interpretation. In particular, CIs and CEs communicate information regard-

ing the precision of estimates and may be inverted to conduct informative
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NHSTs. To promote the addition of this method to researchers’ toolkit of

exploratory latent variable methods, this article illustrates use of the SPM,

including its CIs and CEs, and introduces a web application that automatically

processes model results for ease of interpretation.

The SPM and especially its CEs are ideal for exploring whether the form of

any unknown latent bivariate relationship is linear. Recall that to detect potential

linearity, a line finding algorithm was developed as an implementation of the

NHST of H0 : E½η2jη1� ¼ a0 þ b0η1 (Pek & Chalmers, 2015). Users should be

aware that this approach to evaluating nonlinearity is a graphical (or numerical)

implementation, and results obtained from the search algorithm are not definitive

but diagnostic at best. In conclusion, the semiparametric nature of these tools are

best applied in an exploratory manner, and the providence of the web application

as a computing resource should further encourage the exploration of potential

nonlinearity among latent variables.
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